Experiment No. 3

- **1.0 Title :** Characteristics of thermistor.
- 2.0 Prior Concept : Temperature, resistance, semi-conductor, hysteresis.

3.0 New Concepts :

Proposition : Thermistors are thermally sensitive resistors, which are of NTC and PTC types.

Concept Structure :

Proposition : NTC thermistors are those whose resistance decreases with increase in temperature. **Concept Structure :**

Proposition : PTC Thermistors are those whose resistance increases with increase in temperature. (Draw the graph for PTC Thermistor and write down concept structure.)

Concept Structure :

4.0 Learning Objectives :

a. Intellectual Skills :-

To draw inference from the graph.

b. Motor Skill :-

- 1. To measure the temperature.
- 2. To plot the characteristics.

5.0 Apparatus :

a. Fill up the following table according to experimental setup.

Sr. No.	Equipment / Component	Specification
1	Thermistor (Shape & Range)	
2	Ohm Meter/DMM	
3	Hot Plate	
4	Mercury Thermometer	

b. Experimental setup:-

Fig. 4.1: Experimental Setup

6.0 Stepwise Procedure :

- 1) Make the connections as per the circuit diagram.
- 2) Increase the temperature of the water in a beaker in steps of 5°C.
- 3) Note down the temperature and corresponding resistance of the thermistor with the help of Ohm meter / DMM.
- 4) Plot the graph of temperature Vs resistance for both sets of reading heating and cooling taken.
- 5) Calculate the value of β by using given formula.

$$R_{T1} = R_{T2} \exp \left[\beta \left(\frac{1}{T1} - \frac{1}{T2} \right) \right]$$

Where $\ RT1$: Resistance of the thermistor at absolute temperature $T1^{\circ}K$

- RT2 : Resistance of the thermistor at absolute temperature $T2^{\scriptscriptstyle 0}K$
- β : a constant depending upon the material of thermistor, typically 3500 to 4500 °K.

Sr. No.	Temperature (^o C)	Resistance	
		Heating	Cooling
1	Room temperature		
2	35		
3	40		
4	45		
5	50		
6	55		
7	60		
8	65		
9	70		
10	75		
11	80		
12	85		
13	90		
14	95		
15	BP water (100°C)		

OBSERVATION TABLE

7.0 Result : Value of β

- 1. While heating
- 2. while cooling
- 8.0 Conclusion : Comment on the nature of the graph and hysteresis of the curve

9.0 **Questions :** (Attempt 3-5 questions as directed by the teacher)

- 1. Mention the type of Thermistor used, based on shape.
- 2. Mention the different ranges of Thermistor based on shapes.
- 3. Give two applications of Thermistor.
- 4. What is the maximum value of Thermistor resistance in the experiment?
- 5. What are the two basic types of Thermistor?
- 6. Differentiate between Thermistor and RTD on the basis of principle.
- 7. On the basis of observations state whether Thermistor is a linear or nonlinear transducer.
- 8. Draw sketch of bead, probe, disk, rod type thermistor.
- 9. Which materials are used for preparing the Thermistor?
- 10. What are the different ways to excite thermistor?
- 11. State whether cold junction compensation is needed for thermistor. Justify the answer.
- 12. What is the contact and lead resistance problem?
- 13. Comments on the obtained value of β with specification sheet.

(Space for answer)

GRAPH

l	